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Abstract. A unified formulation of coherence which is appropriate to both the electromagnetic 
and electron fields is proposed. The degree of coherence possible for the electron field and 
its experimental consequences are investigated. 

1. Introduction 

The concept of coherence occurs widely in physics but its definition appears to vary 
depending on the experiment considered. The well known classical definitions relevant 
to many photon optics experiments have been extended by Glauber (1964) to the quantum 
case (Mandel and Wolf 1965). These definitions are not entirely relevant however to 
experiments involving interference of independent beams (Mandel 1964a, b) and a more 
appropriate definition is developed. After an analysis of the common basis underlying 
all definitions of coherence (including that of Rocca 1973), definitions of electron 
coherence analogous to those of Glauber are proposed and the implications of these 
are explored systematically. 

2. The coherence concept 

Coherence in general appears to be attributed to states which behave like those of some 
idealized or classical model of the system being studied, in the context of a well defined 
subset of the totality of experiments capable of being performed on that system. In 
virtually all cases the idealized model is taken to be a simple wave model and the type 
or degree of coherence is defined in a way depending on the set of experiments chosen. 
For example Glauber’s widely used criterion for first-order photon coherence 

(1) ( A ;  (XI )A: (xz)) = V,*(X,) v,(xz) 
for some function V,(x), is equivalent to the following definition which is expressed in 
terms of an idealized model : 

Dejinition ( I ) .  A photon state is said to be coherent if and only if the results in all 
possible experiments in which only the instantaneous intensity is measured, are 
such that they are capable of being predicted by appealing to a single wave (,(x) 
(with the intensity given in the usual way by S,v~,*(x)(v(x)) without recourse to an 
averaging process of any kind. The waves are taken to satisfy the electromagnetic 
wave equation in the region concerned; 

O2t,(X) = 0. (2) 
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The equivalence of these definitions can be shown using the quantum expression for 
the instantaneous intensity 

I(x) = sflv(Ai(xl)A:(x2)) = s , v  1 o ~ ~ , p ( X l ~ k 2 , v ( X Z ) ( a ~ ~ , f l a k ~ , ~ ) .  (3) 
k i k z  

In this expression ak,# is the annihilation operator of the state k,  p represented by the 
time-dependent wavefunction ok,,(x). In free space @ k , , ( x )  = ckeik'x or in an inter- 
ference experiment ak,,(x) can be taken as the solution to the single-photon equation 
compatible with the boundary conditions imposed by the slits etc. It can be seen from 
(3) that a state fulfils definition (I) if and only if the matrix (ail, ,akz,v) has only one non- 
zero eigenvalue 1, (with eigenvector qk,, say) since, if one defines 

then (3) is in the form required by definition (I) and c&,(x) is a solution of the wave 
equation. The existence of precisely one non-zero eigenvalue is equivalent to the 
possibility of factorizing (~$!!,,a~~,~) into the form 1q:l,Cqk2,v and this in turn is equivalent 
to requiring that (A;(xl)A:(xz)) factorize as in equation (1). Thus the equivalence 
has been shown. 

Under these definitions any incoherence is due entirely to the quantum nature of 
the field and not to any spread in frequencies or momenta. Any such spread will merely 
cause rapid fluctuations in the instantaneous intensity without affecting the coherence. 
This contrasts with the situation in classical optics where a different definition of 
coherence is used. This classical definition may also be applied to quantum optics and 
is relevant to experiments which measure the intensity averaged over some time interval. 

Definition ( I I ) .  A state is said to be coherent if and only if the results in all possible 
experiments, in which only the intensity averaged over a certain time interval is 
measured, are such that they are capable of being predicted by considering a single 
frequency wave (,(x) obeying equation (2) and without recourse to an averaging 
process of any kind. 

Definition (11) is very convenient as, in practice, intensities are often measured over 
times long compared to the fluctuations and also since single frequency waves are very 
easily treated theoretically. With this definition, incoherence arises from any spread 
in frequencies and momenta as well as from the quantum nature of the state. 

Coherent states of any sort are easy to treat theoretically because of the idealized 
properties they possess, but even if a state is not coherent the concept of a coherent 
state is very useful. For example, if definition (I) is used we can make use of the Hermitian 
nature of the matrix (ail,flak2,,). This matrix can be diagonalized giving positive eigen- 
values 1; with associated eigenvectors q:,,. Thus (3) can always be written in the form 

where l i (x)  is defined analogously to (4). Hence the results in intensity measuring 
experiments can always be predicted on the basis of an ensemble of states which behave 
in the idealized manner; ie by merely summing the predictions obtained for each of a 
set of easily treated coherent states. The ensemble of functions {;(x) is sometimes 
considered as directly corresponding to the ensemble of particles which are being 
detected but as can be seen above this is in general only a convenient fiction. 
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Although the use of ensembles of coherent states is a great simplification, in certain 
cases the description of states can be made even simpler by defining coherence functions 
which describe in a more average sense how well the idealized behaviour fits the actual 
behaviour. The first-order coherence function corresponding to Glauber’s definition 
of coherence (I) is well known but it is perhaps appropriate to comment on the coherence 
function associated with definition (11). This can be written 

where the bar indicates time averaging. Although such time averaging occurs almost 
universally in experiments it is seldom if ever included in the definitions of coherence 
functions. If the interval of time averaging (z) is much greater than the period of any 
fluctuations ( l / A o )  then the time averaging operation is equivalent to deleting certain 
terms in the density matrix for the state. Consider the density operator for an arbitrary 
state 

p = 1 1 P ( { n k > ,  {mk>)l{nk>>({mk>l. 
ink) (mk) 

Hence 

X lom eXp[ + i ( O k ,  -wk,)t] dt. 

Equating to zero those P({n,>,  {mk})  which involve non-degenerate states [{nk)), ( {mk} l ,  
and those which differ by more than one occupation number, yields a new density 
operator p’ which will give the time-averaged expectation value without explicitly time 
averaging. The process is often implicitly included by treating only states which are 
already of this form (ie stationary states). 

Coherence is also frequently defined for experiments which measure intensity cor- 
relations rather than simple intensities. Such a definition can easily be arrived at by 
replacing ‘instantaneous intensity’ with ‘nth order intensity correlation’ in definition (1). 
For such a definition the representation of an arbitrary state by an ensemble of coherent 
states cannot in general be obtained by diagonalization of a Hermitian matrix and 
indeed does not always exist in the orthodox sense. However with a generalization of 
the concept of an ensemble, such a representation is possible by virtue of the optical 
equivalence theorem (Klauder and Sudarshan 1968). Coherence functions describing 
the extent to which a state is coherent in the above sense are described elsewhere 
(Glauber 1964). Another type of coherence which could be of much use in discussing 
experiments involving interference between independent beams (Mandel 1964a, b) 
can be defined by replacing in definition (I) ‘experiments in which only the instantaneous 
intensity is measured’ with ‘experiments involving interference of the beam being 
studied with another independent beam’. This definition is referred to as dejnition (111). 
The combined beams will behave in the idealized (wavelike) manner if this total beam 
is coherent according to definition (I). As Glauber has shown, this is equivalent to 
requiring that for all k, , k,, p, v 
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If kl is in beam (1) and k, in beam (2) then because the beams are independent equation 
(6) may be factorized 

A state which is coherent in this sense, not only has a well defined relative phase between 
different points in space as required by definition (I) but has a well defined absolute 
phase (defined by the phase of (ak,#)). If there are many modes in the beam then it is 
perhaps more convenient to use an equivalent form in coordinate space, namely, 

I(A:(x))12 = (A,(x)A:(x)). (8) 

Coherence functions can be defined in the following ways: 

The only states which are fully coherent in this sense are the eigenstates of the annihila- 
tion operators which are, as is well known, coherent to all orders. Any stationary state 
will be completely incoherent using this definition, ie g""' = 0. Thus, although 
stationary states are useful in the situations outlined in definition (II), in general it is 
inappropriate to use stationary states in the description of experiments involving inter- 
ference of independent beams. 

3. Electron coherence 

Rocca (1973) provides a definition of electron coherence which can be expressed in 
the manner of g 2. 

Dejnition (ZV). An electron state is coherent if and only if the photon counting 
statistics obtained using a detector in this state are of the same simple form obtained 
using a semi-classical model or an approximate quantum model, namely a compound 
Poisson distribution. 

Although such a definition could be useful for experiments involving photodetection, 
in the field of electron optics the following definition related to that used in photon 
optics is perhaps more applicable and in line with the usual idea of coherence. 

Definition (V). An electron state is coherent if and only if the results in all possible 
experiments in which only the instantaneous 'electron field intensity' is measured, 
are such that they are capable of being predicted by appealing to a single (spinor) 
wave ~ X X )  (with the intensity given by S;,&x)C,(x) where the bar indicates the spinor 
adjoint; c*y4) without recourse to an averaging process of any kind. The waves 
are taken to satisfy the Dirac equation ; 
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In order to apply this definition it is necessary to choose a particular expression for 
the electron field ‘intensity’ which is both convenient and physically accurate. From a 
study of the electron detection process (Every 1973) it would appear that the expression 

would be suitable over at least a small range of electron energies (AE << E).  
Time average electron coherence can also be defined by analogy with definition 

(11) for photons and this will be designated definition (VI).  The remaining definitions of 
photon coherence are readily carried over into the area of electron optics. Electron 
coherence of the nth order thus causes 

/ n  1 \ 

to factorize. The definition corresponding to definition (111) or equations (7) and (8), 
for photons and applicable to experiments involving interference of independent beams, 
will be referred to as definition (VIZ). 

The anticommutation rules which apply to the electron field do however place very 
severe restrictions on the possibilities for the existence of coherent states (Bowring 
et a1 1971). The one-particle states are trivially first-order coherent (under definition (V) 
and also definition (VI) if they are energy eigenstates) but apart from these no state 
exists which is coherent in any sense or for any order. This can be shown by an argument 
the first part of which is based on one by Klauder and Sudarshan (1968). Assume 
I+) is a first-order coherent state. Then, as for photons, this implies that (clc,) = qtql  
for some sequence {&}. Define bl = Zl Ullcl where 

It can be seen that b, is a conventional destruction operator for a new mode or single 
particle state Z1 Ullll). The transformation to this new mode can be considered as part 
of a unitary transformation to a new basis of modes which includes this new mode. 

It can also be seen that (b:b,) = 0 unless m = 1 and from this we can conclude that 
the state must be entirely of the mode defined by b,,  ie it must be a linear combination 
of states of the form 

Although for photons this is quite a general state, for electrons (bf)” = 0 unless n = 1 
and thus only one-electron states will be (trivially) first-order coherent. Higher-order 
coherent states are impossible since (clcfc,~,) = q:q:q,,,qn is necessary and this leads 
to the contradiction, 

Full coherence in the sense of definition (VII) is also impossible since two such beams 
combined must be first-order coherent and must hence be expressible as a one-particle 
state which cannot be factorized into independent beams. 
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However, in spite of the non-existence of non-trivial coherent states we can, for the 
purpose of describing experiments which measure only intensity, still represent the 
electron state as an ensemble of first-order coherent states in the manner of equation ( 5 )  
and we can still define the extent to which a given state approximates any sort or order 
of coherence by means of coherence functions defined analogously to g$ gft) and 
g?). For example we can define 

The question arises as to how closely a state can approach coherence with a given 
measure of coherence and set of constraints. If the instantaneous intensity is measured, 
then the spread of momenta is of m consequence. Consider a finite set of n momentum 
states and consider the set of all states which can be formed from these momentum values 
such that no momentum is favoured over all the rest, ie symmetrical in all momenta. 
The general state of this form is 

a,10)+u,((O,O ,..., 0,1)+10,0 ,... , 1,0)+ ... +11,0 )..., 0,O)) 
+a,((O,O , . . . )  1,1)+10 ,... , 1,0,1)+ . . .  +Il,1 , . . . I  40)) 

+ .. . +a,ll, 1,. . . )  1,l). (9) 
The coherence (in momentum space) is given by 

and it is this function (independent of k, # k,) which will be maximized by varying the 
coefficients a, subject to two constraints. The first constraint is that the state has a 
fixed average number of electrons, N and the second constraint is the normalization of 
the state. Substituting the state (9) into (10) and using an explicit expression for m one 
obtains 

n ”  (n  - 2)!  
N m =  ( m -  l ) ! (n  - m -  I)! P’(k1 z k2) = - c Jam( 

with the normalization constraints 

n !  
( n - m ) ! m !  

i Iu,J2 = 1 

i la,12 = m. n !  
m = l  ( m - l ) ! ( n - m ) !  

Use of Lagrange multipliers and differentiation leads to a homogeneous set of equations 
which are soluble only when exactly two of the ai are non-zero coefficients. 

Solving for these gives 
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For all values of p and q the corresponding state maximizes gW) in the local sense. Sub- 
stituting into (1 1) gives 

To illustrate this result figure 1 is a graph of gWY'(kl # k,) plotted against N for n = 4 
and all possible values of (p, q). For a given value of R the largest value of gw)(k, # k,) 
can be shown rigorously to occur when the difference between p and q is minimized. 

(0.1) I 

- 213. 
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h 
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Figure 1. A plot of g'"'(k, # k 2 )  against m for n = 4 and all possible values of (p. 9). 

For non-integral values of w, p and q will differ 
p < N c q. This gives 

For integral values of N, p = q = N and hence 

by one and can be taken to satisfy 

(12) 

From equation (12) it can be seen that for a given m the coherence is maximized by 
taking only one non-vanishing coefficient uR and by making n as large as possible, 
ie by spreading the N electrons amongst as many modes as possible. Such states will 
be referred to as 'dilute' states and loosely speaking have as much of the ground state 
per mode as is possible. 

This sort of 'dilute' state is also the sort of state which is most coherent in the sense of 
definition (VII). Consider an arbitrary fermion state of a single mode k 

(1 - )a1 2)1/210) + alk). 

Then 

which tends to a maximum value of 1 as la[ -, 0. If coherence is maximized keeping 
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R constant the number of modes must be increased as much as possible, ie the most 
coherent state in this sense is the most ‘dilute’ state. 

More usually it is the intensity averaged over a short time interval which is measured. 
Thus as discussed in the previous section only stationary states need be considered. 
If the modes are chosen suitably or if there is sufficient spatial averaging this means 
that one need only consider ensembles of states of the form Ik, k,, k,, . . . , kn). As 
mentioned in the previous section such coherence depends on the spread of momenta 
which cannot be reduced indefinitely for the electron field if there is a finite density of 
states due to the fact that each pair of electrons present must be in a different mode. 
Assume an n electron state of the above form which, in order to maximize the coherence, 
has been concentrated around a particular momentum value (k, say) as closely as 
possible. For definiteness assume a distribution, in momentum space of the form of a 
rectangular prism with dimensions d,, d,, d,, along the appropriate axes which have 
been chosen such that ko is parallel to the z axis. For free electrons in a cavity of dimen- 
sions L,,  L,, L, the linear densities of states along the axes are L,/2n, L,/27r, LZ/27r and 
thus the maximization criterion gives 

d,dyd,L,LyL, 2 (2.n),n. 

The coherence lengths I,, I,, I ,  are roughly the product of 2.n and the reciprocal of the 
appropriate dimensions d,,  d,, d, and thus we get 

1 
1 1 1  < - =- .  
x y z  (PI P” 

Thus the coherence volume cannot be made to exceed the average effective volume per 
electron in the cavity. 

Thus if a beam of electrons is generated in a cavity containing electrons with an 
effective density of 10l5 electrons m-, then the average dimension of the maximum 
coherence volume will be roughly lO-’m. The maximum coherence time z can be 
obtained by dividing 1, by the mean electron speed uo or relativistically by k,(m: + ki ) -1 /2 .  

Another way of expressing this restriction on maximum coherence is to note that 
the maximum degeneracy parameter S is given by 

s p”l,lylz = 1 .  

This contrasts with the photon case where, in a maser beam for example, 6 may be 
much greater than unity. Of course at densities as high as 1015 electrons m-3 space 
charge and other interaction effects will dominate and increase the spread of momenta 
but equation (13) still represents a valid upper limit to the coherence volume. 

4. Conclusions 

Interference experiments with electron beams have been performed by several authors 
such as Mollenstedt and Duker (1956) and Jonsson (1961) (Jonsson et a1 (1974) is an 
English version of the latter reference). The results obtained appear to agree at least 
qualitatively with the wave theory of interference. The considerations of the previous 
sections have justified use of such a theory combined with a suitable definition of 
coherence in explaining interference experiments with electron beams. The definitions 
of coherence proposed here are directly analogous to the usual definitions in photon 
optics in contrast to the definition proposed by Rocca (1973) which is directly relevant 
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only to the electron states in photon detectors. A state which is coherent under Rocca’s 
definition would be incoherent under the definitions of the previous section. Quantita- 
tive estimates of the coherence present in the electron beams used in the experiments of 
Mollenstedt and Duker do not agree well with simple predictions based on the thermal 
spread in electron energies (Klemperer 1972). However it is likely that the differences 
are due to defects in the treatment of the optics of the collimation and magnification 
process or to defects in the assumptions made concerning the production of and inter- 
actions in, the electron beam itself rather than to any fundamental property of electron 
coherence such as that given by equation (1 3). 

Fundamental differences do exist between electron and photon coherence defined 
in either the quantum or time-averaged sense due to the difference in the wave equation 
and (anti)commutation rules for the two fields. These differences have been outlined 
in the previous section for several definitions of coherence and could be important for 
possible future experiments on electron beams of high monochromaticity with apparatus 
capable of resolving the fine details observable in an almost coherent beam. Complete 
second-order coherence, as mentioned in the last section, cannot be observed for electrons 
and because of the anticommutation rules cannot even be approached arbitrarily 
closely. Nevertheless second-order correlation experiments can still, in principle, yield 
a great deal of information about an electron beam, but at the moment, to the author’s 
knowledge, the temporal resolution and beam monochromaticity available are not 
sufficient to obtain useful results. As noted elsewhere (=nard 1970) the theory predicts 
an anticoincidence effect in contradistinction to the coincidence effect observed with 
photons and its observation would indeed be a very direct confirmation of the anti- 
commutation relations of the electron field. 
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